Part Number Hot Search : 
VRE101C E101M FAN8001 KD1124 BP32E3 A5800290 045CT LT1001CH
Product Description
Full Text Search
 

To Download K10P81M100SF2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Freescale Semiconductor Data Sheet: Product Preview
Document Number: K10P81M100SF2 Rev. 4, 3/2011
K10 Sub-Family Data Sheet
Features * Operating Characteristics - Voltage range: 1.71 to 3.6 V - Flash write voltage range: 1.71 to 3.6 V - Temperature range (ambient): -40 to 105C * Performance - Up to 100 MHz ARM Cortex-M4 core with DSP instructions delivering 1.25 Dhrystone MIPS per MHz * Memories and memory interfaces - Up to 512 KB program flash memory on nonFlexMemory devices - Up to 128 KB RAM - Serial programming interface (EzPort) - FlexBus external bus interface * Clocks - 3 to 32 MHz crystal oscillator - 32 kHz crystal oscillator - Multi-purpose clock generator * System peripherals - 10 low-power modes to provide power optimization based on application requirements - Memory protection unit with multi-master protection - 16-channel DMA controller, supporting up to 64 request sources - External watchdog monitor - Software watchdog - Low-leakage wakeup unit * Security and integrity modules - Hardware CRC module to support fast cyclic redundancy checks - 128-bit unique identification (ID) number per chip
www..com
K10P81M100SF2
Supports the following: MK10N512VLK100, MK10N512VMB100
* Human-machine interface - Low-power hardware touch sensor interface (TSI) - General-purpose input/output * Analog modules - Two 16-bit SAR ADCs - Programmable gain amplifier (up to x64) integrated into each ADC - 12-bit DAC - Three analog comparators (CMP) containing a 6-bit DAC and programmable reference input - Voltage reference * Timers - Programmable delay block - Eight-channel motor control/general purpose/PWM timer - Two 2-channel quadrature decoder/general purpose timers - Periodic interrupt timers - 16-bit low-power timer - Carrier modulator transmitter - Real-time clock * Communication interfaces - Two Controller Area Network (CAN) modules - Two SPI modules - Two I2C modules - Four UART modules - Secure Digital host controller (SDHC) - I2S module
This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. (c) 2010-2011 Freescale Semiconductor, Inc. Preliminary
Table of Contents
1 Ordering parts...........................................................................3 1.1 Determining valid orderable parts......................................3 2 Part identification......................................................................3 2.1 Description.........................................................................3 2.2 Format...............................................................................3 2.3 Fields.................................................................................3 2.4 Example............................................................................4 3 Terminology and guidelines......................................................4 3.1 Definition: Operating requirement......................................4 3.2 Definition: Operating behavior...........................................5 3.3 Definition: Attribute............................................................5 3.4 Definition: Rating...............................................................6 3.5 Result of exceeding a rating..............................................6 3.6 Relationship between ratings and operating requirements......................................................................6 3.7 Guidelines for ratings and operating requirements............7 3.8 Definition: Typical value.....................................................7 3.9 Typical value conditions....................................................8 4 Ratings......................................................................................8 4.1 Thermal handling ratings...................................................9 4.2 Moisture handling ratings..................................................9 4.3 ESD handling ratings.........................................................9 4.4 Voltage and current operating ratings...............................9 5 General.....................................................................................10 5.1 Nonswitching electrical specifications...............................10 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 Voltage and current operating requirements.........10 LVD and POR operating requirements.................11 Voltage and current operating behaviors..............11 Power mode transition operating behaviors..........12 Power consumption operating behaviors..............13 EMC radiated emissions operating behaviors.......16 Designing with radiated emissions in mind...........17 Capacitance attributes..........................................17 5.3.2 Thermal attributes.................................................18 6 Peripheral operating requirements and behaviors....................19 6.1 Core modules....................................................................19 6.1.1 6.1.2 Debug trace timing specifications.........................19 JTAG electricals....................................................20
6.2 System modules................................................................23 6.3 Clock modules...................................................................23 6.3.1 6.3.2 6.3.3 MCG specifications...............................................23 Oscillator electrical specifications.........................26 32kHz Oscillator Electrical Characteristics............28
6.4 Memories and memory interfaces.....................................28 6.4.1 6.4.2 6.4.3 Flash (FTFL) electrical specifications....................29 EzPort Switching Specifications............................30 Flexbus Switching Specifications..........................31
6.5 Security and integrity modules..........................................33 6.6 Analog...............................................................................33 6.6.1 6.6.2 6.6.3 6.6.4 ADC electrical specifications.................................33 CMP and 6-bit DAC electrical specifications.........41 12-bit DAC electrical characteristics.....................44 Voltage reference electrical specifications............47
6.7 Timers................................................................................48 6.8 Communication interfaces.................................................48 6.8.1 6.8.2 6.8.3 6.8.4 6.8.5 6.8.6 6.8.7 CAN switching specifications................................49 DSPI switching specifications (low-speed mode)..49 DSPI switching specifications (high-speed mode) 50 I2C switching specifications..................................52 UART switching specifications..............................52 SDHC specifications.............................................52 I2S switching specifications..................................53
6.9 Human-machine interfaces (HMI)......................................55 6.9.1 TSI electrical specifications...................................55
7 Dimensions...............................................................................56 7.1 Obtaining package dimensions.........................................56 8 Pinout........................................................................................56 8.1 K10 Signal Multiplexing and Pin Assignments..................56 8.2 K10 Pinouts.......................................................................61 9 Revision History........................................................................62
5.2 Switching specifications.....................................................17 5.2.1 5.2.2 Device clock specifications...................................17 General switching specifications...........................17
www..com
5.3 Thermal specifications.......................................................18 5.3.1 Thermal operating requirements...........................18
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
2
Preliminary
Freescale Semiconductor, Inc.
Ordering parts
1 Ordering parts
1.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to http://www.freescale.com and perform a part number search for the following device numbers: PK10 and MK10.
2 Part identification
2.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.
2.2 Format
Part numbers for this device have the following format: Q K## M FFF T PP CCC N
2.3 Fields
This table lists the possible values for each field in the part number (not all combinations are valid):
Field Q K## Qualification status Kinetis family Description Values * M = Fully qualified, general market flow * P = Prequalification * K10 * N = Program flash only * X = Program flash and FlexMemory Table continues on the next page...
www..com Flash memory type M
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
3
Terminology and guidelines Field FFF Description Program flash memory size * * * * * * 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB Values
T PP
Temperature range (C) Package identifier
* V = -40 to 105 * C = -40 to 85 * * * * * * * * * * * * * * * * * * FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) EX = 64 QFN (9 mm x 9 mm) LH = 64 LQFP (10 mm x 10 mm) LK = 80 LQFP (12 mm x 12 mm) MB = 81 MAPBGA (8 mm x 8 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm) MF = 196 MAPBGA (15 mm x 15 mm) MJ = 256 MAPBGA (17 mm x 17 mm) 50 = 50 MHz 72 = 72 MHz 100 = 100 MHz 120 = 120 MHz 150 = 150 MHz
CCC
Maximum CPU frequency (MHz)
N
Packaging type
* R = Tape and reel * (Blank) = Trays
2.4 Example
This is an example part number: MK10N512VMD100
3 Terminology and guidelines
3.1 Definition: Operating requirement
www..com
An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
4
Preliminary
Freescale Semiconductor, Inc.
Terminology and guidelines
3.1.1 Example
This is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed:
Symbol VDD Description 1.0 V core supply voltage 0.9 Min. 1.1 Max. V Unit
3.2 Definition: Operating behavior
An operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.
3.2.1 Example
This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements:
Symbol IWP Description Digital I/O weak pullup/ 10 pulldown current Min. 130 Max. A Unit
3.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.
3.3.1 Example
www..com
Symbol CIN_D
This is an example of an attribute:
Description Input capacitance: digital pins -- Min. 7 Max. pF Unit
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
5
Terminology and guidelines
3.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: * Operating ratings apply during operation of the chip. * Handling ratings apply when the chip is not powered.
3.4.1 Example
This is an example of an operating rating:
Symbol VDD Description 1.0 V core supply voltage -0.3 Min. 1.2 Max. V Unit
3.5 Result of exceeding a rating
40 Failures in time (ppm) 30
20
The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.
10
0 Operating rating Measured characteristic
www..com
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
6
Preliminary
Freescale Semiconductor, Inc.
Terminology and guidelines
3.6 Relationship between ratings and operating requirements
go a rh nd lin g in rat g( mi n.) ir qu em en t( n. mi ) ir qu em en t( x ma .) r go ha nd lin g in rat g( x.) ma e gr e gr
Op
era
tin
Op
era
tin
Op
era
tin
Op
era
tin
Fatal range
- Probable permanent failure
Limited operating range
- No permanent failure - Possible decreased life - Possible incorrect operation
Normal operating range
- No permanent failure - Correct operation
Limited operating range
- No permanent failure - Possible decreased life - Possible incorrect operation
Fatal range
- Probable permanent failure
Handling range
- No permanent failure -
3.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements: * Never exceed any of the chip's ratings. * During normal operation, don't exceed any of the chip's operating requirements. * If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.
3.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that: * Lies within the range of values specified by the operating behavior * Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed.
www..com
3.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
7
Ratings Symbol IWP Description Digital I/O weak pullup/pulldown current 10 Min. 70 Typ. 130 Max. A Unit
3.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and temperature conditions:
5000 4500 4000 3500 IDD_STOP (A) 3000 2500 2000 1500 1000 500 0 0.90 0.95 1.00 VDD (V) 1.05 1.10 TJ 150 C 105 C 25 C -40 C
3.9 Typical value conditions
Typical values assume you meet the following conditions (or other conditions as specified):
Symbol TA VDD www..com Description Ambient temperature 3.3 V supply voltage 25 3.3 Value C V Unit
4 Ratings
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
8
Preliminary
Freescale Semiconductor, Inc.
Ratings
4.1 Thermal handling ratings
Symbol TSTG TSDR Description Storage temperature Solder temperature, lead-free Solder temperature, leaded Min. -55 -- -- Max. 150 260 245 Unit C C Notes 1 2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.
4.2 Moisture handling ratings
Symbol MSL Description Moisture sensitivity level Min. -- Max. 3 Unit -- Notes 1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.
4.3 ESD handling ratings
Symbol VHBM VCDM ILAT Description Electrostatic discharge voltage, human body model Electrostatic discharge voltage, charged-device model Latch-up current at ambient temperature of 85C Min. -2000 -500 -100 Max. +2000 +500 +100 Unit V V mA Notes 1 2
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
4.4 Voltage and current operating ratings
Symbol Description www..com VDD IDD VDIO Digital supply voltage Digital supply current Digital input voltage (except RESET, EXTAL, and XTAL) Table continues on the next page... Min. -0.3 -- -0.3 Max. 3.8 185 5.5 Unit V mA V
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
9
General Symbol VAIO ID VDDA VBAT Description Analog, RESET, EXTAL, and XTAL input voltage Instantaneous maximum current single pin limit (applies to all port pins) Analog supply voltage RTC battery supply voltage Min. -0.3 -25 VDD - 0.3 -0.3 Max. VDD + 0.3 25 VDD + 0.3 3.8 Unit V mA V V
5 General
5.1 Nonswitching electrical specifications
5.1.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol VDD VDDA Description Supply voltage Analog supply voltage Min. 1.71 1.71 -0.1 -0.1 1.71 Max. 3.6 3.6 0.1 0.1 3.6 Unit V V V V V Notes
VDD - VDDA VDD-to-VDDA differential voltage VSS - VSSA VSS-to-VSSA differential voltage VBAT VIH RTC battery supply voltage Input high voltage * 2.7 V VDD 3.6 V * 1.7 V VDD 2.7 V VIL Input low voltage * 2.7 V VDD 3.6 V * 1.7 V VDD 2.7 V VHYS IIC Input hysteresis DC injection current -- single pin * VIN < VSS
0.7 x VDD 0.75 x VDD
-- --
V V
-- -- 0.06 x VDD
0.35 x VDD 0.3 x VDD --
V V V 1
0
-0.2
mA 1
www..com injection current -- total MCU limit, includes sum DC of all stressed pins * VIN < VSS
VRAM VRFVBAT VDD voltage required to retain RAM VBAT voltage required to retain the VBAT register file
0 1.2 TBD
-5 -- --
mA V V
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
10
Preliminary
Freescale Semiconductor, Inc.
General 1. All functional non-supply pins are internally clamped to VSS, and induce an injection current when VIN is less than VSS. The IIC maximum operating requirement should not be exceeded. If this requirement cannot be met, the input must be current limited to the value specified.
5.1.2 LVD and POR operating requirements
Table 2. VDD supply LVD and POR operating requirements
Symbol VPOR VLVDH Description Falling VDD POR detect voltage Falling low-voltage detect threshold -- high range (LVDV=01) Low-voltage warning thresholds -- high range VLVW1H VLVW2H VLVW3H VLVW4H VHYSH VLVDL * Level 1 falling (LVWV=00) * Level 2 falling (LVWV=01) * Level 3 falling (LVWV=10) * Level 4 falling (LVWV=11) Low-voltage inhibit reset/recover hysteresis -- high range Falling low-voltage detect threshold -- low range (LVDV=00) Low-voltage warning thresholds -- low range VLVW1L VLVW2L VLVW3L VLVW4L VHYSL VBG tLPO * Level 1 falling (LVWV=00) * Level 2 falling (LVWV=01) * Level 3 falling (LVWV=10) * Level 4 falling (LVWV=11) Low-voltage inhibit reset/recover hysteresis -- low range Bandgap voltage reference Internal low power oscillator period factory trimmed 1. Rising thresholds are falling threshold + hysteresis voltage TBD TBD TBD TBD TBD TBD 1.80 1.90 2.00 2.10 40 1.00 1000 TBD TBD TBD TBD TBD TBD V V V V mV V s TBD TBD TBD TBD TBD 2.70 2.80 2.90 3.00 60 1.60 TBD TBD TBD TBD TBD V V V V mV V 1 Min. TBD TBD Typ. 1.1 2.56 Max. TBD TBD Unit V V 1 Notes
Table 3. VBAT power operating requirements
Symbol Description Min. TBD Typ. 1.1 Max. TBD Unit V Notes VPOR_VBAT Falling VBAT supply POR detect voltage www..com
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
11
General
5.1.3 Voltage and current operating behaviors
Table 4. Voltage and current operating behaviors
Symbol VOH Description Output high voltage -- high drive strength * 2.7 V VDD 3.6 V, IOH = -10mA * 1.71 V VDD 2.7 V, IOH = -3mA Output high voltage -- low drive strength * 2.7 V VDD 3.6 V, IOH = -2mA * 1.71 V VDD 2.7 V, IOH = -0.6mA IOHT VOL Output high current total for all ports Output low voltage -- high drive strength * 2.7 V VDD 3.6 V, IOL = 10mA * 1.71 V VDD 2.7 V, IOL = 3mA Output low voltage -- low drive strength * 2.7 V VDD 3.6 V, IOL = 2mA * 1.71 V VDD 2.7 V, IOL = 0.6mA IOLT IIN IOZ RPU RPD Output low current total for all ports Input leakage current (per pin) Hi-Z (off-state) leakage current (per pin) Internal pullup resistors Internal pulldown resistors -- -- -- -- -- 30 30 0.5 0.5 100 1 1 50 50 V V mA A A k k 2 3 1 -- -- 0.5 0.5 V V VDD - 0.5 VDD - 0.5 -- -- -- 100 V V mA VDD - 0.5 VDD - 0.5 -- -- V V Min. Max. Unit Notes
1. Measured at VDD=3.6V 2. Measured at VDD supply voltage = VDD min and Vinput = VSS 3. Measured at VDD supply voltage = VDD min and Vinput = VDD
5.1.4 Power mode transition operating behaviors
All specifications except tPOR, and VLLSxRUN recovery times in the following table assume this clock configuration: * CPU and system clocks = 100 MHz * Bus and FlexBus clocks = 50 MHz www..com * Flash clock = 25 MHz
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
12
Preliminary
Freescale Semiconductor, Inc.
General
Table 5. Power mode transition operating behaviors
Symbol tPOR Description After a POR event, amount of time from the point VDD reaches 1.8V to execution of the first instruction across the operating temperature range of the chip. RUN VLLS1 RUN * RUN VLLS1 * VLLS1 RUN RUN VLLS2 RUN * RUN VLLS2 * VLLS2 RUN RUN VLLS3 RUN * RUN VLLS3 * VLLS3 RUN RUN LLS RUN * RUN LLS * LLS RUN RUN STOP RUN * RUN STOP * STOP RUN RUN VLPS RUN * RUN VLPS * VLPS RUN 1. Normal boot (FTFL_OPT[LPBOOT]=1) -- -- 4.1 5.8 s s -- -- 4.1 4.2 s s -- -- 4.1 5.9 s s -- -- 4.1 49.2 s s -- -- 4.1 49.3 s s -- -- 4.1 123.8 s s Min. -- Max. 300 Unit s Notes 1
5.1.5 Power consumption operating behaviors
Table 6. Power consumption operating behaviors
Symbol IDDA IDD_RUN Description Analog supply current Run mode current -- all peripheral clocks disabled, code executing from flash -- -- 40 42 TBD TBD mA mA * @ 3.0V Min. -- Typ. -- Max. TBD Unit mA Notes 1 2
* www..com @ 1.8V
Table continues on the next page...
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
13
General
Table 6. Power consumption operating behaviors (continued)
Symbol IDD_RUN Description Run mode current -- all peripheral clocks enabled, code executing from flash * @ 1.8V * @ 3.0V IDD_RUN_M Run mode current -- all peripheral clocks enabled and peripherals active, code executing AX from flash * @ 1.8V * @ 3.0V IDD_WAIT IDD_WAIT IDD_STOP IDD_VLPR IDD_VLPR IDD_VLPW IDD_VLPS IDD_LLS IDD_VLLS3 Wait mode high frequency current at 3.0 V -- all peripheral clocks disabled Wait mode reduced frequency current at 3.0 V -- all peripheral clocks disabled Stop mode current at 3.0 V Very-low-power run mode current at 3.0 V -- all peripheral clocks disabled Very-low-power run mode current at 3.0 V -- all peripheral clocks enabled Very-low-power wait mode current at 3.0 V Very-low-power stop mode current at 3.0 V Low leakage stop mode current at 3.0 V Very low-leakage stop mode 3 current at 3.0 V * 128KB RAM devices IDD_VLLS2 IDD_VLLS1 IDD_VBAT Very low-leakage stop mode 2 current at 3.0 V Very low-leakage stop mode 1 current at 3.0 V Average current when CPU is not accessing RTC registers at 3.0 V -- -- -- -- 8 4 2 550 TBD TBD TBD TBD A A A nA 9 -- -- 55 56 TBD TBD mA mA 4 -- -- -- -- -- -- -- -- -- -- 85 85 35 15 0.4 1.25 TBD 1.05 50 12 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD mA mA mA mA mA mA mA mA A A 6 7 8 2 5 Min. Typ. Max. Unit Notes 3
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode. All peripheral clocks disabled. 3. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled, but peripherals are not in active operation. 4. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled, and peripherals are in active operation. 5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clock. MCG configured for FEI mode. www..com 6. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral clocks disabled. Code executing from flash. 7. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash. 8. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral clocks disabled. 9. Includes 32kHz oscillator current and RTC operation.
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
14
Preliminary
Freescale Semiconductor, Inc.
General
5.1.5.1 * * * * *
Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions: MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE) All peripheral clocks disabled except FTFL LVD disabled No GPIOs toggled Code execution from flash
Figure 1. Run mode supply current vs. core frequency -- all peripheral clocks disabled
The following data was measured under these conditions:
www..com
* * * * *
MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE) All peripheral clocks enabled but peripherals are not in active operation LVD disabled No GPIOs toggled Code execution from flash
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
15
General
Figure 2. Run mode supply current vs. core frequency -- all peripheral clocks enabled
5.1.6 EMC radiated emissions operating behaviors
Table 7. EMC radiated emissions operating behaviors
Symbol VRE1 VRE2 VRE3 VRE4 Description Radiated emissions voltage, band 1 Radiated emissions voltage, band 2 Radiated emissions voltage, band 3 Radiated emissions voltage, band 4 Frequency band (MHz) 0.15-50 50-150 150-500 500-1000 0.15-1000 Typ. TBD TBD TBD TBD TBD -- 2, 3 Unit dBV Notes 1, 2
VRE_IEC_SAE IEC www..com and SAE level
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions, IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions--TEM Cell and Wideband TEM Cell Method, and SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits--TEM/ Wideband TEM (GTEM) Cell Method. 2. VDD = 3 V, TA = 25 C, fOSC = 12 MHz (crystal), fSYS = 96 MHz
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
16
Preliminary
Freescale Semiconductor, Inc.
General 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions--TEM Cell and Wideband TEM Cell Method, and Appendix D of SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits--TEM/Wideband TEM (GTEM) Cell Method.
5.1.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to http://www.freescale.com. 2. Perform a keyword search for "EMC design."
5.1.8 Capacitance attributes
Table 8. Capacitance attributes
Symbol CIN_A CIN_D Description Input capacitance: analog pins Input capacitance: digital pins Min. -- -- Max. 7 7 Unit pF pF
5.2 Switching specifications
5.2.1 Device clock specifications
Symbol Description Normal run mode fSYS fBUS FB_CLK fFLASH System and core clock Bus clock FlexBus clock Flash clock VLPR mode fSYS System and core clock -- -- -- -- 2 2 2 1 MHz MHz MHz MHz -- -- -- -- 100 50 50 25 MHz MHz MHz MHz Min. Max. Unit Notes
fBUS Bus clock www..com FB_CLK FlexBus clock fFLASH Flash clock
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
17
General
5.2.2 General switching specifications
These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, and I2C signals.
Symbol Description GPIO pin interrupt pulse width (digital glitch filter disabled) -- Synchronous path GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) -- Asynchronous path GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) -- Asynchronous path External reset pulse width (digital glitch filter disabled) Mode select (EZP_CS) hold time after reset deassertion Port rise and fall time (high drive strength) * Slew disabled * Slew enabled Port rise and fall time (low drive strength) * Slew disabled * Slew enabled 1. 2. 3. 4. The greater synchronous and asynchronous timing must be met. This is the shortest pulse that is guaranteed to be recognized. 75pF load 15pF load -- -- 32 36 ns ns -- -- 12 36 ns ns 4 Min. 1.5 100 16 TBD 2 Max. -- -- -- -- -- Bus clock cycles 3 Unit Bus clock cycles ns ns Notes 1 2
2
5.3 Thermal specifications
5.3.1 Thermal operating requirements
Table 9. Thermal operating requirements
Symbol TJ TA Description Die junction temperature Ambient temperature Min. -40 -40 Max. 125 105 Unit C C
www..com
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
18
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
5.3.2 Thermal attributes
Board type
Singlelayer (1s) Four-layer (2s2p) Singlelayer (1s) Four-layer (2s2p) -- -- -- 1.
Symbol
RJA RJA RJMA RJMA RJB RJC JT
Description
Thermal resistance, junction to ambient (natural convection) Thermal resistance, junction to ambient (natural convection) Thermal resistance, junction to ambient (200 ft./ min. air speed) Thermal resistance, junction to ambient (200 ft./ min. air speed) Thermal resistance, junction to board Thermal resistance, junction to case Thermal characterization parameter, junction to package top outside center (natural convection)
81 80 LQFP Unit MAPBGA
TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD C/W C/W C/W C/W C/W C/W C/W
Notes
1 1 1 1 2 3 4
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions--Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions--Forced Convection (Moving Air).
6 Peripheral operating requirements and behaviors
All digital I/O switching characteristics assume: 1. output pins * have CL=30pF loads, * are configured for fast slew rate (PORTx_PCRn[SRE]=0), and * are configured for high drive strength (PORTx_PCRn[DSE]=1) 2. input pins * have their passive filter disabled (PORTx_PCRn[PFE]=0)
6.1 Core modules
6.1.1 Debug trace timing specifications
www..com
Symbol Tcyc Twl Description Clock period Low pulse width Table continues on the next page...
Table 10. Debug trace operating behaviors
Min. Max. Unit MHz ns Frequency dependent 2 --
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
19
Peripheral operating requirements and behaviors
Table 10. Debug trace operating behaviors (continued)
Symbol Twh Tr Tf Ts Th Description High pulse width Clock and data rise time Clock and data fall time Data setup Data hold Min. 2 -- -- 3 2 Max. -- 3 3 -- -- Unit ns ns ns ns ns
Figure 3. TRACE_CLKOUT specifications
TRACE_CLKOUT
Ts Th Ts Th
TRACE_D[3:0]
Figure 4. Trace data specifications
6.1.2 JTAG electricals
Table 11. JTAG limited voltage range electricals
Symbol Description Operating voltage J1 TCLK frequency of operation * Boundary Scan * JTAG and CJTAG * Serial Wire Debug J2 TCLK cycle period www..com Table continues on the next page... 0 0 0 1/J1 10 25 50 -- ns Min. 2.7 Max. 3.6 Unit V MHz
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
20
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 11. JTAG limited voltage range electricals (continued)
Symbol J3 Description TCLK clock pulse width * Boundary Scan * JTAG and CJTAG * Serial Wire Debug J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 TCLK rise and fall times Boundary scan input data setup time to TCLK rise Boundary scan input data hold time after TCLK rise TCLK low to boundary scan output data valid TCLK low to boundary scan output high-Z TMS, TDI input data setup time to TCLK rise TMS, TDI input data hold time after TCLK rise TCLK low to TDO data valid TCLK low to TDO high-Z TRST assert time TRST setup time (negation) to TCLK high 50 20 10 -- 20 0 -- -- 8 1 -- -- 100 8 3 -- -- 25 25 -- -- 17 17 -- -- ns ns ns ns ns ns ns ns ns ns ns -- -- Min. Max. Unit ns
Table 12. JTAG full voltage range electricals
Symbol Description Operating voltage J1 TCLK frequency of operation * Boundary Scan * JTAG and CJTAG * Serial Wire Debug J2 J3 TCLK cycle period TCLK clock pulse width * Boundary Scan * JTAG and CJTAG * Serial Wire Debug J4 J5 TCLK rise and fall times Boundary scan input data setup time to TCLK rise 50 25 12.5 -- 20 0 -- -- 8 3 -- -- 25 25 -- ns ns ns ns ns ns -- -- 0 0 0 1/J1 10 20 40 -- ns ns Min. 1.71 Max. 3.6 Unit V MHz
J6 Boundary scan input data hold time after TCLK rise www..com J7 J8 J9 TCLK low to boundary scan output data valid TCLK low to boundary scan output high-Z TMS, TDI input data setup time to TCLK rise Table continues on the next page...
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
21
Peripheral operating requirements and behaviors
Table 12. JTAG full voltage range electricals (continued)
Symbol J10 J11 J12 J13 J14 Description TMS, TDI input data hold time after TCLK rise TCLK low to TDO data valid TCLK low to TDO high-Z TRST assert time TRST setup time (negation) to TCLK high Min. 1.4 -- -- 100 8 Max. -- 22.1 22.1 -- -- Unit ns ns ns ns ns
J2 J3 J3
TCLK (input)
J4
J4
Figure 5. Test clock input timing
TCLK
J5 J6
Data inputs
J7
Input data valid
Data outputs
J8
Output data valid
Data outputs
J7
Data outputs
Output data valid
Figure 6. Boundary scan (JTAG) timing
www..com
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
22
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
TCLK
J9 J10
TDI/TMS
J11
Input data valid
TDO
J12
Output data valid
TDO
J11
TDO
Output data valid
Figure 7. Test Access Port timing
TCLK
J14 J13
TRST
Figure 8. TRST timing
6.2 System modules
There are no specifications necessary for the device's system modules.
6.3 Clock modules
www..com
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
23
Peripheral operating requirements and behaviors
6.3.1 MCG specifications
Table 13. MCG specifications
Symbol fints_ft fints_t Iints tirefsts fdco_res_t Description Internal reference frequency (slow clock) -- factory trimmed at nominal VDD and 25C Internal reference frequency (slow clock) -- user trimmed Internal reference (slow clock) current Internal reference (slow clock) startup time Resolution of trimmed DCO output frequency at fixed voltage and temperature -- using SCTRIM and SCFTRIM Resolution of trimmed DCO output frequency at fixed voltage and temperature -- using SCTRIM only Total deviation of trimmed average DCO output frequency over voltage and temperature Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0-70C Internal reference frequency (fast clock) -- factory trimmed at nominal VDD and 25C Internal reference frequency (fast clock) -- user trimmed Internal reference (fast clock) current Internal reference startup time (fast clock) Loss of external clock minimum frequency -- RANGE = 00 Loss of external clock minimum frequency -- RANGE = 01, 10, or 11 FLL ffll_ref fdco FLL reference frequency range DCO output frequency range Low range (DRS=00) 640 x ffll_ref Mid range (DRS=01) 1280 x ffll_ref 40 41.94 50 MHz 31.25 20 -- 20.97 39.0625 25 kHz MHz 2, 3 Min. -- 31.25 -- -- -- Typ. 32.768 -- TBD TBD 0.1 Max. -- 39.0625 -- 4 0.3 Unit kHz kHz A s %fdco 1 Notes
fdco_res_t
--
0.2
0.5
%fdco
1
fdco_t fdco_t
--
+ 0.5 - 1.0
3.5
%fdco %fdco
1
--
0.5
TBD
1
fintf_ft fintf_t Iintf tirefstf floc_low floc_high
3.4 3 -- -- (3/5) x fints_t (16/5) x fints_t
-- -- TBD TBD -- --
4 5 -- TBD -- --
MHz MHz A s kHz kHz
www..com
Mid-high range (DRS=10) 1920 x ffll_ref High range (DRS=11) 2560 x ffll_ref
60
62.91
75
MHz
80
83.89
100
MHz
Table continues on the next page...
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
24
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 13. MCG specifications (continued)
Symbol Description Low range (DRS=00) 732 x ffll_ref Mid range (DRS=01) 1464 x ffll_ref Mid-high range (DRS=10) 2197 x ffll_ref High range (DRS=11) 2929 x ffll_ref Jcyc_fll Jacc_fll tfll_acquire FLL period jitter FLL accumulated jitter of DCO output over a 1s time window FLL target frequency acquisition time PLL fvco Ipll VCO operating frequency PLL operating current * PLL @ 96 MHz (fosc_hi_1=8MHz, fpll_ref=2MHz, VDIV multiplier=48) PLL reference frequency range PLL period jitter PLL accumulated jitter over 1s window Lock entry frequency tolerance Lock exit frequency tolerance Lock detector detection time 48.0 -- -- 950 100 -- MHz A 8 -- -- -- TBD TBD -- TBD TBD 1 ps ps ms 6 6 7 -- 95.98 -- MHz -- 71.99 -- MHz -- 47.97 -- MHz Min. -- Typ. 23.99 Max. -- Unit MHz Notes 4, 5 fdco_t_DMX3 DCO output frequency 2
fpll_ref Jcyc_pll Jacc_pll Dlock Dunl tpll_lock
2.0 -- -- 1.49 4.47 --
-- 400 TBD -- -- --
4.0 -- -- 2.98 5.97 0.15 + 1075(1/ fpll_ref)
MHz ps ps % % ms 11 9, 10 9, 10
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0. 3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (fdco_t) over voltage and temperature should be considered. 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1. 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 6. This specification was obtained at TBD frequency. 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, www..com crystal/resonator is being used as the reference, this specification assumes it is already running. FBE, FBI). If a 8. Excludes any oscillator currents that are also consuming power while PLL is in operation. 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 10. This specification was obtained at internal frequency of TBD. 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
25
Peripheral operating requirements and behaviors
6.3.2 Oscillator electrical specifications
This section provides the electrical characteristics of the module. 6.3.2.1
Symbol VDD IDDOSC
Oscillator DC electrical specifications
Description Supply voltage Supply current -- low-power mode (HGO=0) * 32 kHz * 4 MHz * 8 MHz * 16 MHz * 24 MHz * 32 MHz -- -- -- -- -- -- Min. 1.71
Table 14. Oscillator DC electrical specifications
Typ. -- Max. 3.6 Unit V 1 500 200 300 700 1.2 1.5 -- -- -- -- -- -- nA A A A mA mA 1 -- -- -- -- -- -- -- -- -- -- -- -- 25 400 800 1.5 3 4 -- -- -- 10 -- 1 -- -- -- -- -- -- -- -- -- -- -- -- M M M M A A A mA mA mA 2, 3 2, 3 2, 4 Notes
IDDOSC
Supply current -- high gain mode (HGO=1) * 32 kHz * 4 MHz * 8 MHz * 16 MHz * 24 MHz * 32 MHz
Cx Cy RF
EXTAL load capacitance XTAL load capacitance Feedback resistor -- low-frequency, low-power mode (HGO=0) Feedback resistor -- low-frequency, high-gain mode (HGO=1) Feedback resistor -- high-frequency, low-power mode (HGO=0) Feedback resistor -- high-frequency, high-gain mode (HGO=1)
Table continues on the next page...
www..com
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
26
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 14. Oscillator DC electrical specifications (continued)
Symbol RS Description Series resistor -- low-frequency, low-power mode (HGO=0) Series resistor -- low-frequency, high-gain mode (HGO=1) Series resistor -- high-frequency, low-power mode (HGO=0) Series resistor -- high-frequency, high-gain mode (HGO=1) -- Vpp5 Peak-to-peak amplitude of oscillation (oscillator mode) -- low-frequency, low-power mode (HGO=0) Peak-to-peak amplitude of oscillation (oscillator mode) -- low-frequency, high-gain mode (HGO=1) Peak-to-peak amplitude of oscillation (oscillator mode) -- high-frequency, low-power mode (HGO=0) Peak-to-peak amplitude of oscillation (oscillator mode) -- high-frequency, high-gain mode (HGO=1) 1. 2. 3. 4. 5. -- 0 0.6 -- -- k V Min. -- -- -- Typ. -- 200 -- Max. -- -- -- Unit k k k Notes
--
VDD
--
V
--
0.6
--
V
--
VDD
--
V
VDD=3.3 V, Temperature =25 C See crystal or resonator manufacturer's recommendation Cx,Cy can be provided by using either the integrated capacitors or by using external components. When low power mode is selected, RF is integrated and must not be attached externally. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.
6.3.2.2
Symbol fosc_lo fosc_hi_1
Oscillator frequency specifications
Description Oscillator crystal or resonator frequency -- low frequency mode (MCG_C2[RANGE]=00) Oscillator crystal or resonator frequency -- high frequency mode (low range) (MCG_C2[RANGE]=01) Min. 32 3
Table 15. Oscillator frequency specifications
Typ. -- -- Max. 40 8 Unit kHz MHz Notes
Oscillator crystal or resonator frequency -- high frequency mode (high range) www..com (MCG_C2[RANGE]=1x) fec_extal tdc_extal Input clock frequency (external clock mode) Input clock duty cycle (external clock mode)
fosc_hi_2
8
--
32
MHz
-- 40
-- 50
50 60
MHz %
1
Table continues on the next page...
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
27
Peripheral operating requirements and behaviors
Table 15. Oscillator frequency specifications (continued)
Symbol tcst Description Crystal startup time -- 32 kHz low-frequency, low-power mode (HGO=0) Crystal startup time -- 32 kHz low-frequency, high-gain mode (HGO=1) Crystal startup time -- 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) Crystal startup time -- 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) Min. -- -- -- Typ. TBD 800 4 Max. -- -- -- Unit ms ms ms Notes 2, 3
--
3
--
ms
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL 2. Proper PC board layout procedures must be followed to achieve specifications. 3. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.
6.3.3 32kHz Oscillator Electrical Characteristics
This section describes the module electrical characteristics. 6.3.3.1
Symbol VBAT RF Cpara Cload Vpp
32kHz oscillator DC electrical specifications
Description Supply voltage Internal feedback resistor Parasitical capacitance of EXTAL32 and XTAL32 Internal load capacitance (programmable) Peak-to-peak amplitude of oscillation Min. 1.71 -- -- -- --
Table 16. 32kHz oscillator DC electrical specifications
Typ. -- 100 2.5 15 0.6 Max. 3.6 -- -- -- -- Unit V M pF pF V
6.3.3.2
Symbol fosc_lo
32kHz oscillator frequency specifications
Description Oscillator crystal Min. -- --
Table 17. 32kHz oscillator frequency specifications
Typ. 32 1000 Max. -- -- Unit kHz ms 1 Notes
www..com start-up time tstart Crystal
1. Proper PC board layout procedures must be followed to achieve specifications.
6.4 Memories and memory interfaces
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
28
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.4.1 Flash (FTFL) electrical specifications
This section describes the electrical characteristics of the FTFL module. 6.4.1.1 Flash timing specifications -- program and erase
The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.
Table 18. NVM program/erase timing specifications
Symbol thvpgm4 thversscr Description Longword Program high-voltage time Sector Erase high-voltage time Min. -- -- -- Typ. 20 20 160 Max. TBD 100 800 Unit s ms ms 1 1 Notes
thversblk256k Erase Block high-voltage time for 256 KB 1. Maximum time based on expectations at cycling end-of-life.
6.4.1.2
Symbol
Flash timing specifications -- commands
Description Read 1s Block execution time Min.
Table 19. Flash command timing specifications
Typ. Max. Unit Notes
trd1blk256k trd1sec2k tpgmchk trdrsrc tpgm4
* 256 KB data flash Read 1s Section execution time (flash sector) Program Check execution time Read Resource execution time Program Longword execution time Erase Flash Block execution time
-- -- -- -- --
-- -- -- -- 50
1.4 40 35 35 TBD
ms s s s s 2 1 1 1
tersblk256k tersscr
* 256 KB data flash Erase Flash Sector execution time Program Section execution time
-- --
160 20
800 100
ms ms 2
tpgmsec512 tpgmsec1k
* 512 B flash * 1 KB flash
-- -- -- -- -- --
TBD TBD TBD -- -- 50
TBD TBD TBD 2.8 35 TBD
ms ms ms ms s s 1
* 2 KB flash tpgmsec2k www..com trd1all trdonce tpgmonce Read 1s All Blocks execution time Read Once execution time Program Once execution time
Table continues on the next page...
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
29
Peripheral operating requirements and behaviors
Table 19. Flash command timing specifications (continued)
Symbol tersall tvfykey Description Erase All Blocks execution time Verify Backdoor Access Key execution time Min. -- -- Typ. 320 -- Max. 1600 35 Unit ms s Notes 2 1
1. Assumes 25MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
6.4.1.3
Flash (FTFL) current and power specfications
Description Worst case programming current in program flash
Table 20. Flash (FTFL) current and power specfications
Typ. 10 Unit mA
Symbol IDD_PGM
6.4.1.4
Symbol
Reliability specifications
Description
Table 21. NVM reliability specifications
Min. Program Flash Typ.1 Max. Unit Notes
tnvmretp10k tnvmretp1k tnvmretp100 nnvmcycp
Data retention after up to 10 K cycles Data retention after up to 1 K cycles Data retention after up to 100 cycles Cycling endurance
5 10 15 10 K
TBD TBD TBD TBD
-- -- -- --
years years years cycles
2 2 2 3
1. Typical data retention values are based on intrinsic capability of the technology measured at high temperature derated to 25C. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618. 2. Data retention is based on Tjavg = 55C (temperature profile over the lifetime of the application). 3. Cycling endurance represents number of program/erase cycles at -40C Tj 125C.
6.4.2 EzPort Switching Specifications
Table 22. EzPort switching specifications
Num Description Operating voltage EZP_CK frequency of operation (all commands except READ) www..com EP1a EZP_CK frequency of operation (READ command) EP2 EP3 EP4 EZP_CS negation to next EZP_CS assertion EZP_CS input valid to EZP_CK high (setup) EZP_CK high to EZP_CS input invalid (hold) Table continues on the next page... EP1 Min. 2.7 -- -- 2 x tEZP_CK 5 5 Max. 3.6 fSYS/2 fSYS/8 -- -- -- Unit V MHz MHz ns ns ns
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
30
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 22. EzPort switching specifications (continued)
Num EP5 EP6 EP7 EP8 EP9 Description EZP_D input valid to EZP_CK high (setup) EZP_CK high to EZP_D input invalid (hold) EZP_CK low to EZP_Q output valid (setup) EZP_CK low to EZP_Q output invalid (hold) EZP_CS negation to EZP_Q tri-state Min. 2 5 -- 0 -- Max. -- -- 12 -- 12 Unit ns ns ns ns ns
EZP_CK
EP3 EP4 EP2
EZP_CS
EP7 EP8
EP9
EZP_Q (output)
EP5 EP6
EZP_D (input)
Figure 9. EzPort Timing Diagram
6.4.3 Flexbus Switching Specifications
All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency. The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.
www..com
Num Description Operating voltage Frequency of operation
Table 23. Flexbus switching specifications
Min. 2.7 -- Table continues on the next page... Max. 3.6 50 Unit V Mhz Notes
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
31
Peripheral operating requirements and behaviors
Table 23. Flexbus switching specifications (continued)
Num FB1 FB2 FB3 FB4 FB5 Description Clock period Address, data, and control output valid Address, data, and control output hold Data and FB_TA input setup Data and FB_TA input hold Min. 20 TBD 0 8.5 0.5 Max. -- 11.5 -- -- -- Unit ns ns ns ns ns 1 1 2 2 Notes
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA.
FB1
FB_CLK
FB3 FB5
FB_A[Y]
FB2
Address FB4 Data
FB_D[X] FB_RW FB_TS FB_ALE
Address
AA=1
FB_CSn FB_OEn
FB4
AA=0
FB_BEn
FB5
AA=1
www..com FB_TA
AA=0
FB_TSIZ[1:0]
TSIZ
Figure 10. FlexBus read timing diagram
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
32
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
FB1
FB_CLK
FB2 FB3 Address
FB_A[Y] FB_D[X] FB_RW FB_TS FB_ALE
Address
Data
AA=1
FB_CSn FB_OEn
FB4
AA=0
FB_BEn
FB5
AA=1
FB_TA FB_TSIZ[1:0]
AA=0
TSIZ
Figure 11. FlexBus write timing diagram
6.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
www..com
6.6 Analog
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
33
Peripheral operating requirements and behaviors
6.6.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 24 and Table 25 are achievable on the differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and ADCx_DP3. The ADCx_DP2 and ADCx_DM2 ADC inputs are used as the PGA inputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 26 and Table 27. All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. 6.6.1.1
Symbol VDDA VDDA VSSA VREFH VREFL VADIN CADIN
16-bit ADC operating conditions
Description Supply voltage Supply voltage Ground voltage ADC reference voltage high Reference voltage low Input voltage Input capacitance * 16 bit modes * 8/10/12 bit modes Conditions Absolute Delta to VDD (VDDVDDA) Delta to VSS (VSSVSSA) Min. 1.71 -100 -100 1.13 VSSA VREFL -- --
Table 24. 16-bit ADC operating conditions
Typ.1 -- 0 0 VDDA VSSA -- 8 4 Max. 3.6 +100 +100 VDDA VSSA VREFH 10 5 Unit V mV mV V V V pF 2 2 Notes
RADIN RAS
Input resistance Analog source resistance 13/12 bit modes fADCK < 4MHz 13 bit modes
--
2
5
k 3
--
--
5
k
fADCK fADCK
ADC conversion clock frequency
4 1.0 -- 18.0 MHz 5 2.0 -- 12.0 MHz
ADC conversion clock www..com frequency
16 bit modes
Table continues on the next page...
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
34
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 24. 16-bit ADC operating conditions (continued)
Symbol Crate Description ADC conversion rate Conditions 13 bit modes No ADC hardware averaging Continuous conversions enabled Peripheral clock = 50MHz Crate ADC conversion rate 16 bit modes No ADC hardware averaging Continuous conversions enabled Peripheral clock = 50MHz 1. Typical values assume VDDA = 3.0 V, Temp = 25C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. DC potential difference. 3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the best results. The results in this datasheet were derived from a system which has <8 analog source resistance. The RAS/ CAS time constant should be kept to <1ns. 4. In order to use the maximum ADC conversion clock frequency ADHSC bit should be set and the ADLPC should be clear. 5. In order to use the maximum ADC conversion clock frequency ADHSC bit should be set and the ADLPC should be clear. 6. For guidelines and examples of conversion rate calculation please download the ADC calculator tool http:// cache.freescale.com/files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1 7. For guidelines and examples of conversion rate calculation please download the ADC calculator tool http:// cache.freescale.com/files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1 37.037 -- 361.402 Ksps 7 18.484 -- 818.330 Ksps Min. Typ.1 Max. Unit Notes 6
www..com
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
35
Peripheral operating requirements and behaviors
SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT
Z ADIN
SIMPLIFIED CHANNEL SELECT CIRCUIT
Z AS R AS V ADIN V AS C AS
Pad leakage due to input protection
R ADIN
ADC SAR ENGINE
R ADIN INPUT PIN
R ADIN
INPUT PIN
R ADIN C ADIN
INPUT PIN
Figure 12. ADC input impedance equivalency diagram
6.6.1.2
Symbol IDDA
Table 25. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Description Supply current ADC asynchronous clock source * ADLPC=1, ADHSC=0 * ADLPC=1, ADHSC=1 * ADLPC=0, ADHSC=0 * ADLPC=0, ADHSC=1 Sample Time Conditions1 Min. 0.215 -- -- -- -- Typ.2 -- 2.4 4.0 5.2 6.2 Max. 1.7 -- -- -- -- Unit mA MHz MHz MHz MHz Notes 3 tADACK = 1/ fADACK
16-bit ADC electrical characteristics
fADACK
See Reference Manual chapter for sample times
Conversion Time The ADC calculator tool can be used to determine ADC conversion times for different ADC configurations: http://cache.freescale.com/files/soft_dev_tools/software/app_software/ converters/ADC_CALCULATOR_CNV.zip?fpsp=1 TUE Total unadjusted error * 13 bit modes * <12 bit modes 0.8 0.5 TBD 1 LSB4 ADC conversion clock <12MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
www..com
Table continues on the next page...
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
36
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 25. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol DNL Description Differential nonlinearity Conditions1 * 13 bit modes * <12 bit modes Min. Typ.2 0.7 0.2 Max. TBD 0.5 Unit LSB4 Notes ADC conversion clock <12MHz, Max hardware averaging (AVGE = %1, AVGS = %11) Max averaging VADIN = VDDA
INL
Integral nonlinearity Full-scale error
* 13 bit modes * <12 bit modes * 13 bit modes * <12 bit modes
-- -- -- -- -- --
1.0 0.5 0.4 1.0 -1 to 0 --
TBD TBD TBD TBD -- 0.5
LSB4
EFS EQ
LSB4
Quantization error
* 16 bit modes * 13 bit modes
LSB4
ENOB
Effective number 16 bit differential mode of bits * Avg=32 * Avg=1 16 bit single-ended mode * Avg=32 * Avg=1
5 TBD TBD 13.6 13.2 TBD TBD bits bits
TBD TBD
TBD TBD 6.02 x ENOB + 1.76
TBD TBD
bits bits dB 5
SINAD THD
Signal-to-noise plus distortion Total harmonic distortion
See ENOB 16 bit differential mode * Avg=32 16 bit single-ended mode * Avg=32 -- --
-94 TBD
TBD TBD
dB dB 5
SFDR
Spurious free dynamic range
16 bit differential mode * Avg=32 16 bit single-ended mode * Avg=32 TBD TBD -- dB TBD 95 -- dB
Table continues on the next page...
www..com
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
37
Peripheral operating requirements and behaviors
Table 25. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol EIL Description Input leakage error Conditions1 Min. Typ.2 IIn x RAS Max. Unit mV Notes IIn = leakage current (refer to the MCU's voltage and current operating ratings) Temp sensor slope VTEMP25 Temp sensor voltage * -40C to 25C * 25C to 105C 25C -- -- -- TBD TBD TBD -- -- -- mV/C mV/C mV
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA 2. Typical values assume VDDA = 3.0 V, Temp = 25C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock speed. 4. 1 LSB = (VREFH - VREFL)/2N 5. Input data is 1 kHz sine wave.
FIGURE TBD
Figure 13. Typical TUE vs. ADC conversion rate 12-bit single-ended mode
FIGURE TBD
Figure 14. Typical ENOB vs. Averaging for 16-bit differential and 16-bit single-ended modes
6.6.1.3
Symbol VDDA VREFPGA
16-bit ADC with PGA operating conditions
Description Supply voltage PGA ref voltage Conditions Absolute Min. 1.71 Typ.1 --
Table 26. 16-bit ADC with PGA operating conditions
Max. 3.6 Unit V V V V 2, 3 Notes
VREFOUT VREFOUT VREFOUT VSSA VSSA -- -- VDDA VDDA
VADIN Input voltage www..com VCM Input Common Mode range
Table continues on the next page...
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
38
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 26. 16-bit ADC with PGA operating conditions (continued)
Symbol RPGAD Description Differntial input impedance Conditions Gain = 1, 2, 4, 8 Gain = 16, 32 Gain = 64 RAS TS Analog source resistance ADC sampling time Min. -- -- -- -- 1.25 Typ.1 128 64 32 100 -- Max. -- -- -- -- -- s 5 6 Unit k Notes IN+ to IN-4
1. Typical values assume VDDA = 3.0 V, Temp = 25C, fADCK = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. ADC must be configured to use the internal voltage reference (VREFOUT) 3. PGA reference connected to the VREFOUT pin. If the user wishes to drive VREFOUT with a voltage other than the output of the VREF module, the VREF module must be disabled. 4. For single ended configurations the input impedence of the driven input is 1/2. 5. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency. 6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25s time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock.
6.6.1.4
Symbol IDDA_PGA IDC_PGA IILKG G
16-bit ADC with PGA characteristics
Description Supply current Input DC current Input Leakage current Gain4 PGA disabled * PGAG=0 * PGAG=1 * PGAG=2 * PGAG=3 * PGAG=4 * PGAG=5 * PGAG=6 -- TBD TBD TBD TBD TBD TBD TBD -- -- TBD Conditions Min. --
Table 27. 16-bit ADC with PGA characteristics
Typ.1 590 Max. TBD Unit A A TBD 0.98 1.99 3.97 7.95 15.8 31.4 61.2 -- -- TBD TBD TBD TBD TBD TBD TBD TBD TBD 4 40 -- kHz kHz dB VDDA= 3V 100mV, fVDDA= 50Hz, 60Hz A 2 3 RAS < 100 Notes
Input signal bandwidth www..com PSRR Power supply rejection ration
BW
* 16-bit modes * < 16-bit modes Gain=1
Table continues on the next page...
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
39
Peripheral operating requirements and behaviors
Table 27. 16-bit ADC with PGA characteristics (continued)
Symbol CMRR Description Common mode rejection ratio Conditions * Gain=1 * Gain=64 Min. TBD TBD Typ.1 TBD TBD Max. -- -- Unit dB dB Notes VCM= 500mVpp, fVCM= 50Hz, 100Hz Gain=1, ADC Averaging=32 5 0 to 50C
VOFS TGSW dG/dT
Input offset voltage Gain switching settling time Gain drift over temperature Offset drift over temperature Gain drift over supply voltage Input leakage error * Gain=1 * Gain=64 Gain=1 * Gain=1 * Gain=64 All modes
-- -- -- -- -- -- --
0.2 -- TBD TBD TBD TBD TBD IIn x RAS
TBD 10 TBD TBD TBD TBD TBD
mV s ppm/C ppm/C ppm/C %/V %/V mV
dVOFS/dT dG/dVDDA EIL
0 to 50C, ADC Averaging=32 VDDA from 1.71 to 3.6V IIn = leakage current (refer to the MCU's voltage and current operating ratings)
VPP,DIFF
Maximum differential input signal swing Signal-to-noise ratio * Gain=1 * Gain=64
V where VX = VREFPGA x 0.583 TBD TBD 83.0 57.5 -- -- dB dB
6
SNR
16-bit differential mode, Average=32 16-bit differential mode, Average=32, fin=500Hz 16-bit differential mode, Average=32, fin=500Hz
THD
Total harmonic distortion
* Gain=1 * Gain=64
TBD TBD
89.4 90.0
-- --
dB dB
SFDR
Spurious free dynamic range
* Gain=1 * Gain=64
TBD TBD
90.9 77.0
-- --
dB dB
www..com
Table continues on the next page...
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
40
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 27. 16-bit ADC with PGA characteristics (continued)
Symbol ENOB Description Effective number of bits Conditions * Gain=1, Average=4 * Gain=1, Average=8 * Gain=64, Average=4 * Gain=64, Average=8 * Gain=1, Average=32 * Gain=2, Average=32 * Gain=4, Average=32 * Gain=8, Average=32 * Gain=16, Average=32 * Gain=32, Average=32 * Gain=64, Average=32 SINAD Signal-to-noise plus distortion ratio See ENOB Min. TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD Typ.1 12.3 12.7 8.4 8.7 13.3 13.1 12.5 11.8 11.1 10.2 9.3 Max. -- -- -- -- -- -- -- -- -- -- -- Unit bits bits bits bits bits bits bits bits bits bits bits dB Notes 16-bit differential mode, fin=500Hz
6.02 x ENOB + 1.76
1. Typical values assume VDDA =3.0V, Temp=25C, fADCK=6MHz unless otherwise stated. 2. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function if input common mode voltage (VCM) and the PGA gain. 3. This is the input leakage current of the module in addition to the PAD leakage current. 4. Gain = 2PGAG 5. When the PGA gain is changed, it takes some time to settle the output for the ADC to work properly. During a gain switching, a few ADC outputs should be discarded (minimum two data samples, may be more depending on ADC sampling rate and time of the switching). 6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting.
6.6.2 CMP and 6-bit DAC electrical specifications
Table 28. Comparator and 6-bit DAC electrical specifications
Symbol VDD IDDHS IDDLS VAIN VAIO Description Supply voltage Supply current, High-speed mode (EN=1, PMODE=1) Supply current, low-speed mode (EN=1, PMODE=0) Analog input voltage Analog input offset voltage Min. 1.71 -- -- VSS - 0.3 -- Table continues on the next page... Typ. -- -- -- -- -- Max. 3.6 200 20 VDD 20 Unit V A A V mV
www..com
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
41
Peripheral operating requirements and behaviors
Table 28. Comparator and 6-bit DAC electrical specifications (continued)
Symbol VH Description Analog comparator hysteresis1 * CR0[HYSTCTR] = 00 * CR0[HYSTCTR] = 01 * CR0[HYSTCTR] = 10 * CR0[HYSTCTR] = 11 VCMPOh VCMPOl tDHS tDLS Output high Output low Propagation delay, high-speed mode (EN=1, PMODE=1) Propagation delay, low-speed mode (EN=1, PMODE=0) Analog comparator initialization delay2 IDAC6b INL DNL 6-bit DAC current adder (enabled) 6-bit DAC integral non-linearity 6-bit DAC differential non-linearity -- -- -- -- VDD - 0.5 -- 20 120 -- -- -0.5 -0.3 5 10 20 30 -- -- 50 250 -- 7 -- -- -- -- -- -- -- 0.5 200 600 TBD -- 0.5 0.3 mV mV mV mV V V ns ns ns A LSB3 LSB Min. Typ. Max. Unit
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD-0.6V. 2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level. 3. 1 LSB = Vreference/64
www..com
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
42
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
0.08 0.07 0.06 0.05
CM P Hystereris (V)
HYSTCTR Setting
00 01
10
0.04 0.03 0.02 0.01 0
11
0.1
0.4
0.7
1
1.3
1.6
Vin level (V)
1.9
2.2
2.5
2.8
3.1
Figure 15. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)
www..com
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
43
Peripheral operating requirements and behaviors
0.18 0.16 0.14 0.12
CMP Hystereris (V) P
HYSTCTR Setting
00 01 10 11
0.1 0 08 0.08 0.06 0.04 0.02 0
0.1
0.4
0.7
1
1.3
Vin level (V)
1.6
1.9
2.2
2.5
2.8
3.1
Figure 16. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)
6.6.3 12-bit DAC electrical characteristics
6.6.3.1
Symbol VDDA VDACR TA CL IL
12-bit DAC operating requirements
Desciption Supply voltage Reference voltage Temperature Output load capacitance Output load current
Table 29. 12-bit DAC operating requirements
Min. 1.71 1.13 -40 -- -- Max. 3.6 3.6 105 100 1 Unit V V C pF mA 2 1 Notes
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREFO) www..com 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
44
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.6.3.2
Symbol
12-bit DAC operating behaviors
Description
Table 30. 12-bit DAC operating behaviors
Min. -- -- -- -- -- 1 -- VDACR -100 -- -- -- 0.4 0.1 60 -- -- -- -- TBD TBD -- -- Typ. -- -- 100 15 -- TBD 100 -- -- -- -- -- -- Max. 150 700 200 30 5 -- TBD VDACR 8 1 1 0.8 0.6 90 -- -- TBD 250 Unit A A s s s s mV mV LSB LSB LSB %FSR %FSR dB V/C ppm of FSR/C V/yr V/s 1.2 0.05 -- 1.7 0.12 -- -- -- -80 dB kHz 550 40 -- -- -- -- 2 3 4 5 5 1 1 1 1 Notes
IDDA_DACLP Supply current -- low-power mode IDDA_DACH Supply current -- high-speed mode
P
tDACLP tDACHP tCCDACLP tCCDACHP Vdacoutl Vdacouth INL DNL DNL VOFFSET EG PSRR TCO TGE AC Rop SR
Full-scale settling time (0x080 to 0xF7F) -- lowpower mode Full-scale settling time (0x080 to 0xF7F) -- highpower mode Code-to-code settling time (0xBF8 to 0xC08) -- low-power mode Code-to-code settling time (0xBF8 to 0xC08) -- high-speed mode DAC output voltage range low -- high-speed mode, no load, DAC set to 0x000 DAC output voltage range high -- high-speed mode, no load, DAC set to 0xFFF Integral non-linearity error -- high speed mode Differential non-linearity error -- VDACR > 2 V Differential non-linearity error -- VDACR = VREFO (1.15 V) Offset error Gain error Power supply rejection ratio, VDDA > = 2.4 V Temperature coefficient offset voltage Temperature coefficient gain error Offset aging coefficient Output resistance load = 3 k Slew rate -80h F7Fh 80h * High power (SPHP) * Low power (SPLP)
CT BW
Channel to channel cross talk 3dB bandwidth
www..com High power (SPHP) *
* Low power (SPLP) 1. 2. 3. 4.
Settling within 1 LSB The INL is measured for 0+100mV to VDACR-100 mV The DNL is measured for 0+100 mV to VDACR-100 mV The DNL is measured for 0+100mV to VDACR-100 mV with VDDA > 2.4V
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
45
Peripheral operating requirements and behaviors 5. Calculated by a best fit curve from VSS+100 mV to VREF-100 mV
Figure 17. Typical INL error vs. digital code
www..com
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
46
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Figure 18. Offset at half scale vs. temperature
6.6.4 Voltage reference electrical specifications
Table 31. VREF full-range operating requirements
Symbol VDDA TA CL Description Supply voltage Temperature Output load capacitance Min. 1.71 -40 -- Max. 3.6 105 100 Unit V C nF Notes
www..com
Symbol Vout Description
Table 32. VREF full-range operating behaviors
Min. TBD Typ. 1.2 Max. TBD Unit V Notes
Voltage reference output with factory trim at nominal VDDA and temperature=25C
Table continues on the next page...
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
47
Peripheral operating requirements and behaviors
Table 32. VREF full-range operating behaviors (continued)
Symbol Vout Vout Vstep Vdrift Ac Ibg Itr Description Voltage reference output with factory trim Voltage reference output user trim Voltage reference trim step Temperature drift (Vmax -Vmin across the full temperature range) Aging coefficient Bandgap only (MODE_LV = 00) current Tight-regulation buffer (MODE_LV =10) current Load regulation (MODE_LV = 10) current = 1.0mA Tstup DC Buffer startup time Line regulation (power supply rejection) Min. TBD 1.198 -- -- -- -- -- -- -- -- -60 Typ. -- -- 0.5 -- -- -- -- -- -- -- -- Max. TBD 1.202 -- 20 TBD TBD 1.1 TBD 100 TBD TBD Unit V V mV mV ppm/year A mA V s mV dB See Figure 19 Notes
Table 33. VREF limited-range operating requirements
Symbol TA Description Temperature Min. 0 Max. 50 Unit C Notes
Table 34. VREF limited-range operating behaviors
Symbol Vout Description Voltage reference output with factory trim Min. TBD Max. TBD Unit V Notes
TBD
Figure 19. Typical output vs.temperature
TBD
Figure 20. Typical output vs. VDD
www..com
6.7 Timers
See General switching specifications.
6.8 Communication interfaces
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
48
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.8.1 CAN switching specifications
See General switching specifications.
6.8.2 DSPI switching specifications (low-speed mode)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.
Table 35. Master mode DSPI timing (low-speed mode)
Num Operating voltage Frequency of operation DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DSPI_SCK output cycle time DSPI_SCK output high/low time DSPI_PCSn to DSPI_SCK output valid DSPI_SCK to DSPI_PCSn output hold DSPI_SCK to DSPI_SOUT valid DSPI_SCK to DSPI_SOUT invalid DSPI_SIN to DSPI_SCK input setup DSPI_SCK to DSPI_SIN input hold Description Min. 1.71 -- 4 x tBCLK (tSCK/2) - 4 (tSCK/2) - 4 (tSCK/2) - 4 -- -2 15 0 Max. 3.6 12.5 -- (tSCK/2) + 4 -- -- 10 -- -- -- Unit V MHz ns ns ns ns ns ns ns ns Notes 1
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.
DSPI_PCSn
DS3 DS2 DS1 DS4
DSPI_SCK (CPOL=0)
DS7 DS8
www..com
DSPI_SOUT
First data
DSPI_SIN
First data DS5
Data DS6 Data
Last data
Last data
Figure 21. DSPI classic SPI timing -- master mode
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
49
Peripheral operating requirements and behaviors
Table 36. Slave mode DSPI timing (low-speed mode)
Num Operating voltage Frequency of operation DS9 DS10 DS11 DS12 DS13 DS14 DS15 DS16 DSPI_SCK input cycle time DSPI_SCK input high/low time DSPI_SCK to DSPI_SOUT valid DSPI_SCK to DSPI_SOUT invalid DSPI_SIN to DSPI_SCK input setup DSPI_SCK to DSIP_SIN input hold DSPI_SS active to DSPI_SOUT driven DSPI_SS inactive to DSPI_SOUT not driven Description Min. 1.71 -- 8 x tBCLK (tSCK/2) - 4 -- 0 5 15 -- -- Max. 3.6 6.25 -- (tSCK/2) + 4 20 -- -- -- 15 15 Unit V MHz ns ns ns ns ns ns ns ns
DSPI_SS
DS10 DS9
DSPI_SCK (CPOL=0) DSPI_SOUT
DS13 DS15 DS12 First data DS14 First data Data Last data DS11 Data Last data DS16
DSPI_SIN
Figure 22. DSPI classic SPI timing -- slave mode
6.8.3 DSPI switching specifications (high-speed mode)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.
www..com
Num Operating voltage Frequency of operation Table continues on the next page...
Table 37. Master mode DSPI timing (high-speed mode)
Description Min. 2.7 -- Max. 3.6 25 Unit V MHz
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
50
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 37. Master mode DSPI timing (high-speed mode) (continued)
Num DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 Description DSPI_SCK output cycle time DSPI_SCK output high/low time DSPI_PCSn to DSPI_SCK output valid DSPI_SCK to DSPI_PCSn output hold DSPI_SCK to DSPI_SOUT valid DSPI_SCK to DSPI_SOUT invalid DSPI_SIN to DSPI_SCK input setup DSPI_SCK to DSPI_SIN input hold Min. 2 x tBCLK (tSCK/2) - 2 (tSCK/2) - 2 (tSCK/2) - 2 -- -2 TBD 0 Max. -- (tSCK/2) + 2 -- -- 8.5 -- -- -- Unit ns ns ns ns ns ns ns ns
DSPI_PCSn
DS3 DS2 DS1 DS4
DSPI_SCK (CPOL=0) DSPI_SIN
DS7 DS8
First data DS5
Data DS6 Data
Last data
DSPI_SOUT
First data
Last data
Figure 23. DSPI classic SPI timing -- master mode Table 38. Slave mode DSPI timing (high-speed mode)
Num Operating voltage Frequency of operation DS9 DS10 DS11 DS12 DS13 DS14 DSPI_SCK input cycle time DSPI_SCK input high/low time DSPI_SCK to DSPI_SOUT valid DSPI_SCK to DSPI_SOUT invalid DSPI_SIN to DSPI_SCK input setup DSPI_SCK to DSIP_SIN input hold 4 x tBCLK (tSCK/2) - 2 -- 0 2 7 -- -- Description Min. 2.7 Max. 3.6 12.5 -- (tSCK/2 + 2 TBD -- -- -- 14 14 Unit V MHz ns ns ns ns ns ns ns ns
DS15 DSPI_SS active to DSPI_SOUT driven www..com DS16 DSPI_SS inactive to DSPI_SOUT not driven
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
51
Peripheral operating requirements and behaviors
DSPI_SS
DS10 DS9
DSPI_SCK (CPOL=0) DSPI_SOUT
DS13 DS15 DS12 First data DS14 First data Data Last data DS11 Data Last data DS16
DSPI_SIN
Figure 24. DSPI classic SPI timing -- slave mode
6.8.4 I2C switching specifications
See General switching specifications.
6.8.5 UART switching specifications
See General switching specifications.
6.8.6 SDHC specifications
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.
Table 39. SDHC switching specifications
Num Symbol Description Operating voltage Card input clock SD1 fpp fpp fpp Clock frequency (low speed) Clock frequency (SD\SDIO full speed) Clock frequency (MMC full speed) Clock frequency (identification mode) Clock low time Clock high time Clock rise time Table continues on the next page... 0 0 0 0 7 7 -- 400 25 20 400 -- -- 3 kHz MHz MHz kHz ns ns ns Min. 2.7 Max. 3.6 Unit V
www..com f OD
SD2 SD3 SD4 tWL tWH tTLH
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
52
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 39. SDHC switching specifications (continued)
Num SD5 Symbol tTHL Description Clock fall time Min. -- Max. 3 Unit ns
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD6 tOD SDHC output delay (output valid) -5 6.5 ns
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD7 SD8 tTHL tTHL SDHC input setup time SDHC input hold time 5 0 -- -- ns ns
SD3
SD2
SD1
SDHC_CLK
SD6
Output SDHC_CMD
Output SDHC_DAT[3:0]
SD7 SD8
Input SDHC_CMD
Input SDHC_DAT[3:0]
Figure 25. SDHC timing
6.8.7 I2S switching specifications
This section provides the AC timings for the I2S in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync (I2S_FS) shown in the figures below.
www..com
Num Description Operating voltage S1 I2S_MCLK cycle time Table continues on the next page...
Table 40. I2S master mode timing
Min. 2.7 2 x tSYS Max. 3.6 Unit V ns
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
53
Peripheral operating requirements and behaviors
Table 40. I2S master mode timing (continued)
Num S2 S3 S4 S5 S6 S7 S8 S9 S10 Description I2S_MCLK pulse width high/low I2S_BCLK cycle time I2S_BCLK pulse width high/low I2S_BCLK to I2S_FS output valid I2S_BCLK to I2S_FS output invalid I2S_BCLK to I2S_TXD valid I2S_BCLK to I2S_TXD invalid I2S_RXD/I2S_FS input setup before I2S_BCLK I2S_RXD/I2S_FS input hold after I2S_BCLK Min. 45% 5 x tSYS 45% -- -2.5 -- -3 20 0 Max. 55% -- 55% 15 -- 15 -- -- -- Unit MCLK period ns BCLK period ns ns ns ns ns ns
S1
S2
S2
I2S_MCLK (output)
S3
I2S_BCLK (output)
S4 S5
S4 S6
I2S_FS (output)
S9 S10
I2S_FS (input)
S7 S8
S7 S8
I2S_TXD
S9 S10
I2S_RXD
Figure 26. I2S timing -- master mode Table 41. I2S slave mode timing
Num Description Operating voltage S11 S12 I2S_BCLK cycle time (input) I2S_BCLK pulse width high/low (input) Min. 2.7 8 x tSYS 45% 10 3 -- 0 10 Max. 3.6 -- 55% -- -- 20 -- -- Unit V ns MCLK period ns ns ns ns ns
S13 I2S_FS input setup before I2S_BCLK www..com S14 S15 S16 S17 I2S_FS input hold after I2S_BCLK I2S_BCLK to I2S_TXD/I2S_FS output valid I2S_BCLK to I2S_TXD/I2S_FS output invalid I2S_RXD setup before I2S_BCLK Table continues on the next page...
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
54
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 41. I2S slave mode timing (continued)
Num S18 Description I2S_RXD hold after I2S_BCLK Min. 2 Max. -- Unit ns
S11 S12
I2S_BCLK (input)
S15
S12 S16
I2S_FS (output)
S13 S14
I2S_FS (input)
S15 S16
S15 S16
I2S_TXD
S17 S18
I2S_RXD
Figure 27. I2S timing -- slave modes
6.9 Human-machine interfaces (HMI)
6.9.1 TSI electrical specifications
Table 42. TSI electrical specifications
Symbol VDDTSI CELE fREFmax fELEmax CREF VDELTA IREF Description Operating voltage Target electrode capacitance range Reference oscillator frequency Electrode oscillator frequency Internal reference capacitor Oscillator delta voltage Reference oscillator current source base current Min. 1.71 1 -- -- TBD TBD TBD TBD -- -- -- Typ. -- 20 5.5 0.5 1 600 1 1 TBD TBD TBD Max. 3.6 500 TBD TBD TBD TBD TBD TBD TBD TBD TBD Unit V pF MHz MHz pF mV A A % % % 2 2 3 4 5 1 Notes
IELE Electrode oscillator current source base current www..com Pres5 Pres20 Pres100 Electrode capacitance measurement precision Electrode capacitance measurement precision Electrode capacitance measurement precision
Table continues on the next page...
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
55
Dimensions
Table 42. TSI electrical specifications (continued)
Symbol Description Min. 0.003 0.003 -- 8 -- -- Typ. 0.25 -- -- 15 TBD 1 Max. -- -- 16 25 -- TBD Unit fF/count fF/count bits s A A 8 Notes 6 7 MaxSens2 Maximum sensitivity @ 20 pF electrode 0 MaxSens Res TCon20 ITSI_RUN ITSI_LP 1. 2. 3. 4. 5. 6. Maximum sensitivity Resolution Response time @ 20 pF Current added in run mode Low power mode current adder
The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16. Measured with a 20 pF electrode, reference oscillator frequency of ~5 MHz (IREF = 5 A, REFCHRG = 4), PS = 128, NSCN = 2; Iext = 16 (EXTCHRG = 15). 7. Typical value depends on the configuration used. 8. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, DELVOL = 2, EXTCHRG = 15.
7 Dimensions
7.1 Obtaining package dimensions
Package dimensions are provided in package drawings. To find a package drawing, go to http://www.freescale.com and perform a keyword search for the drawing's document number:
If you want the drawing for this package 80-pin LQFP 81-pin MAPBGA Then use this document number 98ASS23174W 98ASA10631D
www..com
8 Pinout
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
56
Preliminary
Freescale Semiconductor, Inc.
Pinout
8.1 K10 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. NOTE The 81-pin ballmap assignments are currently being developed. The * in the entries in this package column indicate which signals are present on the package.
81 80 MAP LQF BGA P * * * * * * * * * * * * * 1 2 3 4 5 6 7 8 9 10 11 12 13 Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
PTE0 PTE1 PTE2 PTE3 PTE4 PTE5 VDD VSS PTE16 PTE17 PTE18 PTE19
ADC1_SE4 a ADC1_SE5 a ADC1_SE6 a ADC1_SE7 a DISABLED DISABLED VDD VSS ADC0_SE4 a ADC0_SE5 a ADC0_SE6 a ADC0_SE7 a
ADC1_SE4 a ADC1_SE5 a ADC1_SE6 a ADC1_SE7 a
PTE0 PTE1 PTE2 PTE3 PTE4 PTE5
SPI1_PCS1 UART1_TX SPI1_SOUT UART1_RX SPI1_SCK SPI1_SIN UART1_CT S_b UART1_RT S_b
SDHC0_D1 SDHC0_D0 SDHC0_DC LK SDHC0_CM D SDHC0_D3 SDHC0_D2
I2C1_SDA I2C1_SCL
SPI1_PCS0 UART3_TX SPI1_PCS2 UART3_RX
VDD VSS ADC0_SE4 a ADC0_SE5 a ADC0_SE6 a ADC0_SE7 a PTE16 PTE17 PTE18 PTE19 SPI0_PCS0 UART2_TX SPI0_SCK UART2_RX FTM_CLKIN 0 FTM_CLKIN 1 I2C0_SDA I2C0_SCL FTM0_FLT3 LPT00_ALT 3
SPI0_SOUT UART2_CT S_b SPI0_SIN UART2_RT S_b
PGA0_DP/ PGA0_DP/ PGA0_DP/ ADC0_DP0/ ADC0_DP0/ ADC0_DP0/ ADC1_DP3 ADC1_DP3 ADC1_DP3 PGA0_DM/ PGA0_DM/ PGA0_DM/ ADC0_DM0/ ADC0_DM0/ ADC0_DM0/ ADC1_DM3 ADC1_DM3 ADC1_DM3 PGA1_DP/ PGA1_DP/ ADC1_DP0/ ADC1_DP0/ ADC0_DP3 ADC0_DP3 PGA1_DM/ PGA1_DM/ ADC1_DM0/ ADC1_DM0/ ADC0_DM3 ADC0_DM3 VDDA VREFH VREFL VDDA VREFH VREFL
*
14
PGA1_DP/ ADC1_DP0/ ADC0_DP3 www..com * 16 PGA1_DM/ ADC1_DM0/ ADC0_DM3 * * * 17 18 19 VDDA VREFH VREFL
*
15
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
57
Pinout 81 80 MAP LQF BGA P * * 20 21 Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
VSSA
VSSA
VSSA
VREF_OUT/ VREF_OUT VREF_OUT/ CMP1_IN5/ CMP1_IN5/ CMP0_IN5/ CMP0_IN5/ ADC1_SE1 ADC1_SE1 8 8 DAC0_OUT/ DAC0_OUT DAC0_OUT/ CMP1_IN3/ CMP1_IN3/ ADC0_SE2 ADC0_SE2 3 3 XTAL32 EXTAL32 VBAT PTA0 XTAL32 EXTAL32 VBAT JTAG_TCL K/ SWD_CLK/ EZP_CLK JTAG_TDI/ EZP_DI XTAL32 EXTAL32 VBAT TSI0_CH1 PTA0 UART0_CT S_b FTM0_CH5 JTAG_TCL K/ SWD_CLK JTAG_TDI EZP_CLK
*
22
* * * *
23 24 25 26
* *
27 28
PTA1 PTA2
TSI0_CH2
PTA1 PTA2
UART0_RX UART0_TX
FTM0_CH6 FTM0_CH7
EZP_DI
JTAG_TDO/ TSI0_CH3 TRACE_SW O/EZP_DO JTAG_TMS/ TSI0_CH4 SWD_DIO NMI_b/ EZP_CS_b DISABLED CMP2_IN0 CMP2_IN1 DISABLED DISABLED DISABLED ADC1_SE1 7 VDD VSS EXTAL XTAL RESET_b ADC1_SE1 7 VDD VSS EXTAL XTAL RESET_b CMP2_IN0 CMP2_IN1 TSI0_CH5
JTAG_TDO/ EZP_DO TRACE_SW O JTAG_TMS/ SWD_DIO NMI_b CMP2_OUT I2S0_RX_B CLK I2S0_TXD I2S0_TX_F S I2S0_TX_B CLK I2S0_RXD I2S0_RX_F S I2S0_MCLK I2S0_CLKIN JTAG_TRS T FTM1_QD_ PHA FTM1_QD_ PHB EZP_CS_b
* * * * * * * * * *
29 30 31 32 33 34 35 36 37 38
PTA3 PTA4 PTA5 PTA12 PTA13 PTA14 PTA15 PTA16 PTA17 VDD
PTA3 PTA4 PTA5 PTA12 PTA13 PTA14 PTA15 PTA16 PTA17
UART0_RT S_b
FTM0_CH0 FTM0_CH1 FTM0_CH2
CAN0_TX CAN0_RX
FTM1_CH0 FTM1_CH1
SPI0_PCS0 UART0_TX SPI0_SCK UART0_RX
SPI0_SOUT UART0_CT S_b SPI0_SIN UART0_RT S_b
* 39 VSS www..com * 40 PTA18 * * 41 42 PTA19 RESET_b
PTA18 PTA19
FTM0_FLT2 FTM_CLKIN 0 FTM1_FLT0 FTM_CLKIN 1 LPT0_ALT1
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
58
Preliminary
Freescale Semiconductor, Inc.
Pinout 81 80 MAP LQF BGA P * 43 Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
PTB0
/ ADC0_SE8/ ADC1_SE8/ TSI0_CH0 / ADC0_SE9/ ADC1_SE9/ TSI0_CH6
/ PTB0 ADC0_SE8/ ADC1_SE8/ TSI0_CH0 / PTB1 ADC0_SE9/ ADC1_SE9/ TSI0_CH6
I2C0_SCL
FTM1_CH0
FTM1_QD_ PHA
*
44
PTB1
I2C0_SDA
FTM1_CH1
FTM1_QD_ PHB
*
45
PTB2
/ / PTB2 ADC0_SE1 ADC0_SE1 2/TSI0_CH7 2/TSI0_CH7 / / PTB3 ADC0_SE1 ADC0_SE1 3/TSI0_CH8 3/TSI0_CH8 / ADC1_SE1 4 / ADC1_SE1 5 VSS VDD /TSI0_CH9 / ADC1_SE1 4 / ADC1_SE1 5 VSS VDD /TSI0_CH9 PTB16 PTB10
I2C0_SCL
UART0_RT S_b UART0_CT S_b FB_AD19
FTM0_FLT3
*
46
PTB3
I2C0_SDA
FTM0_FLT0
*
47
PTB10
SPI1_PCS0 UART3_RX
FTM0_FLT1
*
48
PTB11
PTB11
SPI1_SCK
UART3_TX
FB_AD18
FTM0_FLT2
* * * * * * *
49 50 51 52 53 54 55
VSS VDD PTB16 PTB17 PTB18 PTB19 PTC0
SPI1_SOUT UART0_RX SPI1_SIN CAN0_TX CAN0_RX UART0_TX FTM2_CH0 FTM2_CH1 I2S0_TX_B CLK I2S0_TX_F S I2S0_TXD
FB_AD17 FB_AD16 FB_AD15 FB_OE_b FB_AD14
EWM_IN EWM_OUT _b FTM2_QD_ PHA FTM2_QD_ PHB
/TSI0_CH10 /TSI0_CH10 PTB17 /TSI0_CH11 /TSI0_CH11 PTB18 /TSI0_CH12 /TSI0_CH12 PTB19 / ADC0_SE1 4/ TSI0_CH13 / ADC0_SE1 5/ TSI0_CH14 / ADC0_SE4 b/ CMP1_IN0/ TSI0_CH15 /CMP1_IN1 VSS VDD / ADC0_SE1 4/ TSI0_CH13 / ADC0_SE1 5/ TSI0_CH14 / ADC0_SE4 b/ CMP1_IN0/ TSI0_CH15 /CMP1_IN1 VSS VDD PTC4 PTC5 PTC0
SPI0_PCS4 PDB0_EXT RG
*
56
PTC1
PTC1
SPI0_PCS3 UART1_RT S_b
FTM0_CH0
FB_AD13
*
57
PTC2
PTC2
SPI0_PCS2 UART1_CT S_b
FTM0_CH1
FB_AD12
* 58 PTC3 www..com * * * * 59 60 61 62 VSS VDD PTC4 PTC5
PTC3
SPI0_PCS1 UART1_RX
FTM0_CH2
FB_CLKOU T
SPI0_PCS0 UART1_TX SPI0_SCK
FTM0_CH3
FB_AD11
CMP1_OUT CMP0_OUT
LPT0_ALT2 FB_AD10
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
59
Pinout 81 80 MAP LQF BGA P * * * 63 64 65 Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
PTC6 PTC7 PTC8
/CMP0_IN0 /CMP0_IN1 / ADC1_SE4 b/ CMP0_IN2 / ADC1_SE5 b/ CMP0_IN3 / ADC1_SE6 b/ CMP0_IN4 / ADC1_SE7 b VSS VDD
/CMP0_IN0 /CMP0_IN1 / ADC1_SE4 b/ CMP0_IN2 / ADC1_SE5 b/ CMP0_IN3 / ADC1_SE6 b/ CMP0_IN4 / ADC1_SE7 b VSS VDD
PTC6 PTC7 PTC8
SPI0_SOUT PDB0_EXT RG SPI0_SIN
FB_AD9 FB_AD8
I2S0_MCLK I2S0_CLKIN FB_AD7
*
66
PTC9
PTC9
I2S0_RX_B CLK
FB_AD6
FTM2_FLT0
*
67
PTC10
PTC10
I2C1_SCL
I2S0_RX_F S
FB_AD5
*
68
PTC11
PTC11
I2C1_SDA
I2S0_RXD
FB_RW_b
* * *
69 70 71
VSS VDD PTC16
PTC16
CAN1_RX
UART3_RX
FB_CS5_b/ FB_TSIZ1/ FB_BE23_1 6_BLS15_8 _b FB_CS4_b/ FB_TSIZ0/ FB_BE31_2 4_BLS7_0_ b FB_ALE/ FB_CS1_b/ FB_TS_b FB_CS0_b
*
72
PTC17
PTC17
CAN1_TX
UART3_TX
*
73
PTD0
PTD0
SPI0_PCS0 UART2_RT S_b SPI0_SCK UART2_CT S_b
*
74
PTD1
/ ADC0_SE5 b
/ ADC0_SE5 b
PTD1
* * * *
75 76 77 78
PTD2 PTD3 PTD4 PTD5 / ADC0_SE6 b / ADC0_SE7 b VSS / ADC0_SE6 b / ADC0_SE7 b VSS
PTD2 PTD3 PTD4 PTD5
SPI0_SOUT UART2_RX SPI0_SIN UART2_TX FTM0_CH4 FTM0_CH5 SPI0_PCS1 UART0_RT S_b SPI0_PCS2 UART0_CT S_b SPI0_PCS3 UART0_RX
FB_AD4 FB_AD3 FB_AD2 FB_AD1 EWM_IN EWM_OUT _b FTM0_FLT0
www..com * 79 PTD6
PTD6
FTM0_CH6
FB_AD0
* *
-- 80
VSS PTD7
PTD7
CMT_IRO
UART0_TX
FTM0_CH7
FTM0_FLT1
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
60
Preliminary
Freescale Semiconductor, Inc.
Pinout
8.2 K10 Pinouts
The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section. NOTE The 81 MAPBGA ballmap assignments are currently being developed.
www..com
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
61
Revision History
PTC17 PTC16 PTC11 PTC10 PTD6 PTD2 PTD7 PTD5 PTD3 PTD4 PTD1 PTC9 PTC8 PTC7 PTD0 PTC6 VDD VSS PTC5 62 PTC4 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 21 22 25 26 28 29 31 23 24 27 32 35 30 36 33 34 37 38 39 40
79
75
72
71
69
80
78
76
68
70
67
66
65
64
77
74
PTE0 PTE1 PTE2 PTE3 PTE4 PTE5 VDD VSS PTE16 PTE17 PTE18 PTE19 PGA0_DP/ADC0_DP0/ADC1_DP3 PGA0_DM/ADC0_DM0/ADC1_DM3 PGA1_DP/ADC1_DP0/ADC0_DP3 PGA1_DM/ADC1_DM0/ADC0_DM3 VDDA VREFH VREFL VSSA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
73
63
VDD VSS PTC3 PTC2 PTC1 PTC0 PTB19 PTB18 PTB17 PTB16 VDD VSS PTB11 PTB10 PTB3 PTB2 PTB1 PTB0 RESET_b PTA19
VREF_OUT/CMP1_IN5/CMP0_IN5/ADC1_SE18
DAC0_OUT/CMP1_IN3/ADC0_SE23
VBAT
PTA0
PTA2
PTA3
PTA5
XTAL32
EXTAL32
PTA12
PTA15
PTA16
PTA13
PTA14
Figure 28. K10 80 LQFP Pinout Diagram
www..com
9 Revision History
The following table provides a revision history for this document.
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
62
Preliminary
Freescale Semiconductor, Inc.
PTA17
PTA18
PTA1
PTA4
VDD
VSS
Revision History
Table 43. Revision History
Rev. No. 1 2 Date 11/2010 3/2011 Substantial Changes Initial public revision Many updates throughout Corrected 81- and 104-pin package codes 3 4 3/2011 3/2011 Added sections that were inadvertently removed in previous revision Reworded IIC footnote in "Voltage and Current Operating Requirements" table. Added paragraph to "Peripheral operating requirements and behaviors" section. Added "JTAG full voltage range electricals" table to the "JTAG electricals" section.
www..com
K10 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
63
How to Reach Us:
Home Page:
www.freescale.com
Information in this document is provided solely to enable system and sofware implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp. FreescaleTM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. (c) 2010-2011 Freescale Semiconductor, Inc.
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com
www..com
Document Number: K10P81M100SF2 Rev. 4, 3/2011
Preliminary


▲Up To Search▲   

 
Price & Availability of K10P81M100SF2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X